WILEY

Therapeutic Management of Dyslipidaemia: New Strategies

Development, safety, and efficacy of novel therapeutics

Cardiovascular (CV) disease is the leading global cause of mortality¹

Lipid imbalance increases the risk of atherosclerotic vascular disease (ASCVD) and related CV events²

Pharmacological interventions can lower the incidence of dyslipidaemiatriggered CV events³

Evolution of lipid-lowering therapeutics^{1,3}

Problem

Conventional treatment agents for dyslipidaemia, such as small-molecule therapeutics, can cause off-target events and poor patient compliance

Solution

Novel monoclonal antibodies and RNA-based therapeutics can increase compliance while potentially eliminating off-target events

Visit https://ascvd-lipidology.knowledgehub.wiley.com/ for additional resources

Move from conventional to RNA-based targeting¹

More specific therapy

Clear mechanism of action

Fewer adverse effects

Example: The ORION trials showed that twice-yearly administration of inclisiran reduces low-density lipoprotein (LDL)-C by 50%, with only mild adverse effects

Key points for clinicians^{1,2,3}

What are the key underlying causes of ASCVD?

Elevated concentrations of plasma lipoproteins such as LDL, remnant lipoproteins, or lipoprotein (a) (Lp(a)) significantly contribute to the development of ASCVD

Why do we need to increasingly consider modern therapeutic agents for ASCVD?

Novel therapeutics need to be increasingly considered because conventional therapies suffer from two major deficiencies: patient non-compliance and serious adverse effects

Have modern therapies received approval from regulatory agencies?

Yes, the U.S. Food & Drug Administration has already approved some ASOs and siRNAs for the treatment of ASCVD

What are the usual adverse effects associated with RNA-based therapeutics?

Documented adverse effects resulting from RNA-based therapy include injection site reactions, inflammatory reactions, hepatic steatosis, and thrombocytopenia

Conventional protein targets	Current/promising therapeutics	
LDL	Statins Ezetimibe PCSK9 inhibitors Bempedoic acid	
Lp(a)	Pelacarsen (ASO) Olpasiran (ASO) SLN360 Inotersen	
Triglyceride-rich proteins (intermediate-density lipoprotein [IDL] + very low-density lipoproteins [VLDL])	Vupanorsen (ASO) Evinacumab (monoclonal antibody) Eicosapentaenoic acid	

Targets for dyslipidaemia management¹⁻³

Visit https://ascvd-lipidology.knowledgehub.wiley.com/ for additional resources

Current status: Development, safety, and efficacy of novel therapeutics¹⁻³

Liver

Target	Therapeutic	Description	Status
LDL	Evolocumab Alirocumab	Monoclonal antibodies targeting PCSK9	Approved
	Inclisiran	siRNA that silences the intracellular translation of PCSK9 mRNA	Approved for some adults with hypercholesterolaemia or mixed dyslipidaemia
	Mipomersen	ASO that selectively silences the mRNA responsible for the coding of ApoB100	Approved, but the FDA issued a black box warning owing to an increased risk of hepatotoxicity
	Vupanorsen	Second generation ASO selective for ANGPTL3 mRNA	In development, but found to be safe so far
	ARO-ANG3	Selectively inhibits the hepatic translation of ANGPTL3 mRNA	In development, but no major adverse events reported so far

Visit <u>https://ascvd-lipidology.knowledgehub.wiley.com/</u> for additional resources

Lp(a)	Pelacarsen	Selectively inhibits the production of apo(a) by targeting <i>LPA</i> mRNA	Well-tolerated with no major adverse effects
	Olpasiran	siRNA that selectively inhibits <i>LPA</i> gene transcription, reducing Lp(a) levels	In development, but no major adverse reactions reported so far
	APO(a) Rx	Selectively inhibits the production of apo(a) by targeting <i>LPA</i> mRNA	In development, but reported to be safe and well-tolerated so far
	Evinacumab	Monoclonal antibody that reduces the circulatory levels of ANGPTL3	Approved
Triglyceride-rich lipoprotein	Evinacumab Volanesorsen	reduces the circulatory	Approved In development, but no significant adverse effects reported so far

Take-home messages

- Conventional clinical options for lowering dyslipidaemia include targeting proteins such as LDL, Lp(a), and IDL + VLDL with small-molecule therapeutics
- However, conventional therapies for dyslipidaemia have two major shortcomings: patient non-compliance and physiologically relevant adverse effects
- Novel therapies for dyslipidaemia include siRNAs, ASOs, and monoclonal antibodies

- These novel therapies are well-accepted by patients, thus reducing the worry of patient non-compliance
- Many siRNA, ASO, and monoclonal antibody therapeutics are currently undergoing clinical trials
- Most novel therapeutics for reducing dyslipidaemia appear safe and are associated with fewer adverse effects

References

- 1. Blom, D. J., Marais, A. D., Moodley, R., van der Merwe, N., van Tonder, A., & Raal, F. J. (2022). RNA-based therapy in the management of lipid disorders: a review. Lipids in Health and Disease, 21, 41.
- 2. Tokgözoğlu, L., & Libby, P. (2022). The dawn of a new era of targeted lipid-lowering therapies. European Heart Journal, 00, 1–13.
- 3. Henney, N. C., Banach, M., & Penson, P. E. (2021). RNA Silencing in the Management of Dyslipidemias. Current Atherosclerosis Reports, 23, 69.

Published by WILEY

Visit <u>https://ascvd-lipidology.knowledgehub.wiley.com/</u> for additional resources

https://ascvd-lipidology.knowledgehub.wiley.com/wp-content/uploads/2022/08/ Therapeutic_Management-Dyslipidemia_Infographic_August_2022.pdf