Homozygous familial hypercholesterolemia (HoFH) is an inherited genetic disorder and represents a rare and severe subtype of familial hypercholesterolemia.

Characteristics
- Extremely high levels of low-density lipoprotein cholesterol (LDL-C) in blood since birth
- Development of atherosclerotic cardiovascular disease (ASCVD) during childhood

Genetic causes (mutation)
- Both alleles of LDL receptor (LDLR)
- Apolipoprotein B (ApoB)
- Proprotein convertase subtilisin/kexin type 9 (PCSK9)
- LDLR adapter protein 1 (LDLRAP1)

Criteria for diagnosis
- Untreated LDL-C > 400 mg/dL
- Cutaneous or tendon xanthomas before 10 years
- Identification of bi-allelic mutations in LDLR, APOB, PCSK9, or LDLRAP1 genes

Treatment pathway and updated LDL-C goals

<table>
<thead>
<tr>
<th>Goals</th>
<th>Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults (>18 years): Target LDL-C levels of <70 mg/dL</td>
<td>Lifestyle changes</td>
</tr>
<tr>
<td>Children and adolescents: Target LDL-C levels of <115 mg/dL</td>
<td>Statins and ezetimibe</td>
</tr>
</tbody>
</table>

Visit https://ascvd-lipidology.knowledgehub.wiley.com/ for additional resources
Current treatment strategies for HoFH1,2

- Effective lipid-lowering therapy (LLT) is the most widely used
- LDL-C is an effective predictor of disease progression
- Residual LDLR activity is the main determinant for achieving treatment goals
- Patients with HoFH exhibit variable responses due to diverse phenotypes and genotypes

Conventional LLT1

Statins and ezetimibe
- First-line therapy
- Mechanism of action is LDLR dependent
- ↓ ASCVD mortality in adults and children with HoFH

PCSK9 inhibitors

- ↑ Expression of LDLR \(\Leftrightarrow\) ↑ LDL-C clearance

Alirocumab and evolocumab
- Humanised monoclonal antibodies (mAb)

Inclisiran
- Small interfering ribonucleic acid (siRNA)

Lerodalcibep
- Still in the research phase
- Small recombinant fusion protein of a PCSK9 binding domain and albumin

Pharmacological agents acting independently of LDLR1,2

Anti-ApoB therapies
- Lomitapide: Inhibits microsomal triglyceride-transfer protein
- Mipomersen: Antisense oligonucleotide inhibitor

Angiopoietin-like 3 (ANGPTL3) inhibitors
- Evinacumab
- RNA-based treatments targeting ANGPTL3 (vulpanorsen)

Interventions to lower LDL independent of LDLR1

LA
- Selectively remove the circulating ApoB-containing lipoproteins

Liver transplantation
- Curative treatment
- Severe complications

Visit [https://ascvd-lipidology��识hub.wiley.com/](https://ascvd-lipidology.knowledgehub.wiley.com/) for additional resources
Potential of ANGPTL3 inhibitors in HoFH treatment3,4,5

ANGPTL3 is a circulating inhibitor of lipoprotein lipase (LPL) and endothelial lipase (EL)3.

Produced only by the liver at low and constant rates3.

Acts in coordination with ANGPTL4 and ANGPTL8 to control triglyceride breakdown3.

ANGPTL3 inhibition leads to enhanced lipoprotein clearance4.

Promising target to reduce ASCVD risk3.

Evinacumab5

- Fully humanised mAbs inhibiting circulating ANGPTL3
- ↓LPL and EL activities = ↑Plasma LDL-C levels
- **Recommended dose**
 - 15 mg/kg via intravenous fusion for >1 hour
 - Once monthly
- Approved by the US Food and Drug Administration and the European Medicines Agency
- 46.3% reduction in LDL-C\textsubscript{4}

Advantages

- Long-term efficacy
- Safe
- Well-tolerated
- Independent of residual LDLR activity

Vupanorsen3

- Gal-Nac-conjugated antisense oligonucleotide targeting ANGPTL3 mRNA
- Specifically targets asialoglycoprotein receptor in hepatocytes
- Promising efficacy
- Associated with increasing liver steatosis
- Further studies needed

Visit https://ascvd-lipidology.knowledgehub.wiley.com/ for additional resources
Future of HoFH treatment

CRISPR-based genome editing
- Modification of ANGPTL3 and PCSK9 genes
 ▸ ↓ LDL-C levels

Gene transfer
- Adenovirus-mediated gene transfer > Successful expression of LDLR in the liver
 ▸ ↓ LDL-C levels
- No adverse effects

siRNA ARO-ANG3
- Undergoing clinical trials, ARO-ANG3 is an siRNA that targets ANGPTL3

Vaccine targeting ANGPTL3
- Investigating a protein-based vaccine (E1-E2-E3) targeting ANGPTL3 for novel HoFH treatment

Key message

Advancements in the management of HoFH offer highly effective and diverse treatment options, from conventional therapies to cutting-edge innovations, which aim to improve LDL-C control, reduce ASCVD risk, and enhance the quality of life for patients with HoFH

References

