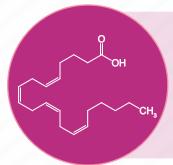

WILEY

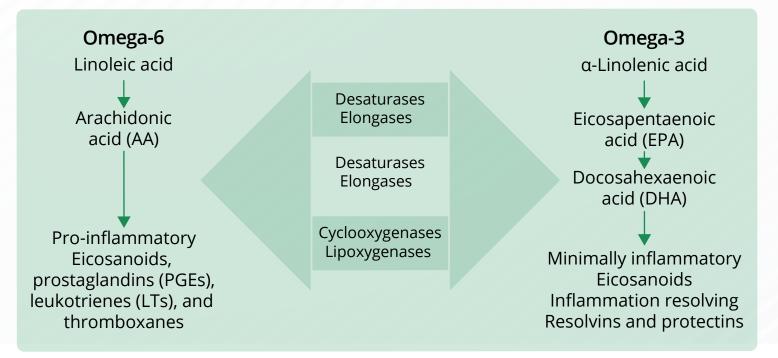
Understanding the Role of Eicosanoids in Atherosclerosis, with a Focus on Icosapent Ethyl as a Therapeutic Option for Cardiovascular Disease

Insights on inflammatory responses in arterial plaque development, precursors of eicosanoids, and key clinical trials

Cardiovascular disease (CVD)

Intima Media Adventitia Mealthy artery Plaque formation


Oxylipins and eicosanoids derived from the oxidation of polyunsaturated fatty acids (PUFAs) regulate inflammation in the tissues


Imbalance in PUFA-derived metabolite levels along with a simultaneous increase in inflammatory stimuli can lead to chronic inflammation in the arteries, resulting in the development of plaques and ASCVD

Visit https://ascvd-lipidology.knowledgehub.wiley.com/ for additional resources

Production of eicosanoids from ω -3 and ω -6 PUFAs⁷

- Eicosanoids, lipid mediators derived from eicosapolyenoic acid, have critical roles in ASCVD
- Polyunsaturated, long fatty acid chains derived from ω -3 (n-3) and ω -6 (n-6) fatty acids are precursors to eicosanoids

The mean EPA/AA ratio was reported as 0.456 \pm 0.321 (mean \pm standard deviation) in patients with acute coronary syndrome⁶

Main pathways involved in the production of eicosanoids⁷

Cyclooxygenase (COX) pathway

- Mediated by COX-1 and COX-2 enzymes within different cells
- Produces PGEs, prostanoids, and thromboxanes

Lipoxygenase (LOX) pathway

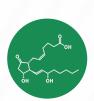
- Mediated by 5-LOX, 12-LOX, or 15-LOX enzymes within leukocytes
- Produces LTs, lipoxins (LXs), and several hydroxyeicosatetraenoic acids (HETEs)

Cytochrome P450 (cyP450) pathway

- Mediated by cyP450 enzyme
- Produces 20-HETE and epoxyeicosatrienoic acids

Eicosanoids involved in the development of atherosclerosis⁶

Eicosanoids derived from EPA and AA play key roles at different stages of the vascular inflammatory processes


Eicosanoids derived from AA in pro-inflammatory response

LTB4 induces the recruitment of polymorphonuclear neutrophils (PMNs) to the atherosclerotic lesions

Subsequently, PGE2 triggers the

production of LXA4 from PMNs

PGE2 facilitates PMN recruitment via vasodilatory effects

is stimulated

LTB4 production is lowered and the

clearance of debris by macrophages

PMNs play a key role in the clearance of debris

Oxylipins derived from EPA, DHA, and docosapentaenoic acid are involved in anti-inflammatory processes

Anti-atherosclerotic properties of oxylipins derived from EPA and DHA

Resolvin D1, derived from DHA via 15-LOX, decreased LTB4 levels in lesions, necrotic core size, and oxidative stress in Ldlr-/- mice8

Resolvin E1, derived from EPA in PMNs, reduced lesion size and inflammatory biomarker levels in multiple animal models; it has completed phase 1 trials for healthy volunteers9

Role of EPA in lowering CVD risk and atherosclerosis⁶

Processes potentially affected by EPA

Endothelial function, oxidative stress, and foam cell formation

production

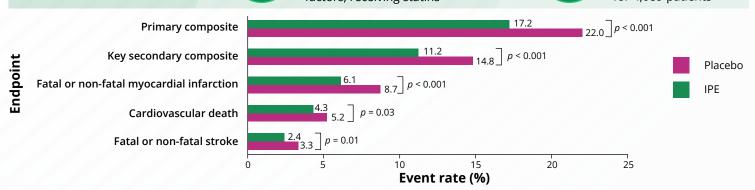
Plaque formation/progression, platelet aggregation, thrombus formation, and plaque rupture

Impact of icosapent ethyl (IPE), a highly purified ethyl ester of EPA, on coronary plaque imaging endpoints¹⁰

Study	Country	Follow-up (months)	Main outcome (mean ± standard error)
CHERRY, 2017	Japan	7.9	11.7% reduction in total plaque volume (–11.7 ± 1.6)
EVAPORATE, 2020	U.S.	18	9% reduction in total plaque volume (–9.0 ± 2.3)
LINK-IT, 2020	Japan	12	23.4% reduction in lipid volume (–23.4 ± 4.6)
Niki <i>et al.</i> , 2016	Japan	6	1.4% reduction in total plaque volume (–1.4 \pm 1.2)
Kita <i>et al.</i> , 2020	Japan	8	17.4% reduction in lipid volume (–17.4 ± 6.2)
Nishio <i>et al.</i> , 2014	Japan	9	55.4% reduction in lipid volume (–55.4 ± 9.8)

Visit https://ascvd-lipidology.knowledgehub.wiley.com/ for additional resources

Clinical trials supporting the cardiovascular benefits of IPE


Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT)¹¹

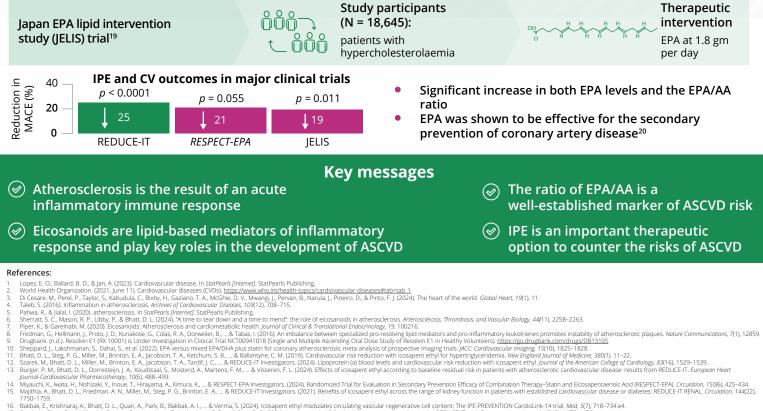
Study participants (N = 8,179): patients with CVD or with diabetes and other risk factors, receiving statins

Therapeutic intervention: IPE at 4 gm per day for 4,089 patients

Post hoc analysis of REDUCE-IT data revealed that the administration of IPE lowered the incidence of major adverse cardiovascular events (MACE) in patients with high levels of lipoprotein(a) as well as showed significant benefits in those with normal lipoprotein(a) levels¹²

- Lowered the risk of MACE in patients with ASCVD and elevated triglyceride levels¹³
- Reduced fatal and non-fatal ischaemic events across the broad range of baseline estimated glomerular filtration rate categories¹⁵
- **Role of IPE treatment**
 - Modulated the vascular regenerative cell content¹⁶ In high-risk patients treated with statins with acute coronary syndrome, IPE
 - reduced the risk of ischaemic events¹⁷ Consistent benefits of IPE were observed in the endpoints across
 - background statin agent and category¹⁸

Randomized Trial for Evaluation in Secondary Prevention Efficacy of **Combination Therapy-Statin and** Eicosapentaenoic Acid (RESPECT-EPA)6



Study participants (N = 2,506): patients with coronary artery disease with a low EPA/AA ratio

Therapeutic intervention IPE at 1.8 gm per day

IPE treatment resulted in a numerically lower risk of cardiovascular events in patients with chronic coronary artery disease, a low EPA/AA ratio, and statin treatment¹⁴

- 10. 11. 12. 13.
- 14. 15.
- 16. 17.
- 1750-1759. Bakbak E, Krishnaraj, A, Bhatt, D. L., Quan, A, Park, B., Bakbak, A. I., ... & Verma, S. (2024). Icosapent ethyl modulates circulating vascular regenerative cell content: The IPE-PREVENTION CardioLink-14 trial. Med, 5(7), 718–734.e4. Sayah, N., Bhatt, D. L., Miller, M., Brinton, E. A., Jacobson, T. A., & Ketchum, S. B., ... & Steeg, P. G. (2024). Icosapent ethyl following acute coronary syndrome: the REDUCE-IT trial. Eurogean Heart Journal, 45(13), 1173–1176. Singh, N., Bhatt, D. L., Miller, M., Brinton, E. A., Jacobson, T. A., & ReDUCE-IT trial. Surgean Heart Journal, 45(13), 1173–1176. Singh, N., Bhatt, D. L., Miller, M., Brinton, E. A., Jacobson, T. A., & ReDUCE-IT trial. Surgean Heart Journal, 45(13), 1173–1176. Vokoyama, M., Origasa, H., Matsuzaki, M., Matsuzawa, Y., Saito, Y., Ishikawa, Y., ... & Shirato, K. (2007). Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): A randomised open-label, blinded endpoint analysis. The Lancet, 369(9567). 18. 19.
- Matsuzaki, M., Yokoyama, M., Saito, Y., Origasa, H., Ishikawa, Y., Oikawa, S., ... & JELIS Investigators. (2009). Incremental effects of eicosapentaenoic acid on cardiovascular events in statin-treated patients with coronary artery disease secondary prevention analysis from JELIS. *Circulation Journal*, 73(7), 1283–1290.

NILEY

Visit https://ascvd-lipidology.knowledgehub.wiley.com/ for additional resources